Round - Based Consensus Algorithms , Predicate Implementations and Quantitative Analysis
نویسنده
چکیده
Fault-tolerant computing is the art and science of building computer systems that continue to operate normally in the presence of faults. The fault tolerance field covers a wide spectrum of research area ranging from computer hardware to computer software. A common approach to obtain a fault-tolerant system is using software replication. However, maintaining the state of the replicas consistent is not an easy task, even though the understanding of the problems related to replication has significantly evolved over the past thirty years. Consensus is a fundamental building block to provide consistency in any fault-tolerant distributed system. A large number of algorithms have been proposed to solve the consensus problem in different systems. The efficiency of several consensus algorithms has been studied theoretically and practically. A common metric to evaluate the performance of consensus algorithms is the number of communication steps or the number of rounds (in round-based algorithms) for deciding. A large amount of improvements to consensus algorithms have been proposed to reduce this number under different assumptions, e.g., nice runs. However, the efficiency expressed in terms of number of rounds does not predict the time it takes to decide (including the time needed by the system to stabilize or not). Following this idea, the thesis investigates the round model abstraction to represent consensus algorithms, with benign and Byzantine faults, in a concise and modular way. The goal of the thesis is first to decouple the consensus algorithm from irrelevant details of implementations, such as synchronization, then study different possible implementations for a given consensus algorithm, and finally propose a more general analytical analysis for different consensus algorithms. The first part of the thesis considers the round-based consensus algorithms with benign faults. In this context, the round model allowed us to separate the consensus algorithms from the round implementation, to propose different round implementations, to improve existing round implementations by making them swift, and to provide quantitative analysis of different algorithms. The second part of the thesis considers the round-based consensus algorithms with Byzantine faults. In this context, there is a gap between theoretical consensus algorithms and practical Byzantine fault-tolerant protocols. The round model allowed us to fill the gap by better understanding
منابع مشابه
The Heard-Of Model: Unifying all Benign Failures
Problems in fault-tolerant distributed computing have been studied in a variety of models. These models are structured around two central ideas: 1. Degree of synchrony and failure model are two independent parameters that determine a particular type of system. 2. Failure and faulty component (i.e., the component responsible for the failure) are necessary and indissociable notions for the analys...
متن کاملA Review on Consensus Algorithms in Blockchain
Block chain technology is a decentralized data storage structure based on a chain of data blocks that are related to each other. Block chain saves new blocks in the ledger without trusting intermediaries through a competitive or voting mechanism. Due to the chain structure or the graph between each block with its previous blocks, it is impossible to change blocking data. Block chain architectur...
متن کاملA novel three-stage distance-based consensus ranking method
In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights since the vector of weights ob...
متن کاملAchieving Consensus Deal with Methodological Issues in the Delphi Technique
Delphi is a powerful technique used to seek answers to appropriate questions. The purpose of this paper is to provide an overview of the Delphi technique as a research method. This paper discusses the scientific merit of the Delphi technique by investigating on 41 studies of Journal of Agricultural Education from 1981 to 2013, and 2 studies of Journal of Agricultural Science and Technology. The...
متن کاملOptimal adaptive leader-follower consensus of linear multi-agent systems: Known and unknown dynamics
In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced reinforcement learning-based algorithms learn online the approximate solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010